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Welcome

This volume contains the extended abstracts selected for presentation at IJCRS 2023, the

2023 International Joint Conference on Rough Sets, held at AGH University of Kraków

on October 5-8, 2023, in Kraków, Poland. Conferences in the IJCRS series, resulting

from the merger of four separate conferences tying rough sets to various paradigms

(RSCTC, data analysis; RSFDGrC, granular computing; RSKT, knowledge technology;

and RSEISP, intelligent systems), are held annually: the first Joint Rough Set Symposium

was held in Toronto, Canada, in 2007; followed by Symposiums in Chengdu, China in

2012; Halifax, Canada, 2013; Granada and Madrid, Spain, 2014; Tianjin, China, 2015,

where the acronym IJCRS was proposed; continuing with the IJCRS 2016 conference in

Santiago de Chile, IJCRS 2017 in Olsztyn, Poland, IJCRS 2018 in Quy Nhon, Vietnam,

IJCRS 2019 in Debrecen, Hungary, IJCRS 2020 in La Habana, Cuba (held online), IJCRS

2021 in Bratislava, Slovakia (hybrid), and IJCRS 2022 in Suzhou, China (hybrid).

Following the success of the previous conferences, IJCRS 2023 continued the tradition of

a very rigorous reviewing process. We would like to thank all the authors for contributing

their papers. Without their contribution, this conference would not have been possible.

The IJCRS 2023 program was further enriched by eight Keynote Speeches, among them

the one presented by Tsau Young Lin, the Founding President of the International

Rough Set Society (IRSS), and the Anniversary Talk by Andrzej Skowron, IRSS Fellow

and former President, who celebrated his 80th birthday during the conference. We

are grateful to our Keynote Speakers, Weronika Adrian, Joel Holland, Andrzej Janusz,

Tianrui Li, Tsau Young Lin, Pradipta Maji, Sheela Ramanna, and Andrzej Skowron.
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The IJCRS 2023 program also hosted the Special Sessions on “Innovative Foundational

Models for Rough Sets, Approximate Reasoning, and Granular Computing” and “Data

Analytics in Cybersecurity and IoT Applications” , as well as the Panel on “Intelligent

Informatics”. We are grateful to the Special Session Organizers Stefania Boffa, A Mani,

Marcin Michalak, and Piotr Synak, to the Panelists Jimmy Huang, Duoqian Miao and

Hung Son Nguyen, as well as to the Panel Moderator Pawan Lingras.

IJCRS 2023 would not have been successful without the support of many people and

organizations. We are indebted to the Program Committee Members and external

reviewers for their effort and engagement in providing a rich and rigorous scientific

program. We greatly appreciate the co-operation, support, and sponsorship of various

institutions, companies, and organizations, including the AGH University of Kraków,

the Strategic Partners QED Software and DeepSeas, Honorary Patronage of the Polish

Ministry of Science and Higher Education and of the Mayor of Kraków„ as well as the

International Rough Set Society. We acknowledge the use of the Springer EquinOCS

conference system for paper submission and review. We are also grateful to Springer for

publishing the proceedings as a volume of LNCS/LNAI.

Last but not least, we would like to thank Anna Smyk, Tomasz Hachaj and the whole

technical organization team at the AGH University of Kraków, for their great support

and endless hours spent on the conference preparations.
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A Python Toolkit for Information Systems over Ontological Graphs

Krzysztof Pancerz1,2

1Institute of Philosophy, The John Paul II Catholic University of Lublin, Poland

2MakoLab S.A., Lodz, Poland

Entended Abstract. We present the designed and implemented Python toolkit for

dealing with information systems (understood as the Pawlak’s knowledge representation

systems) over ontological graphs. In such systems, the domain knowledge in a form

of ontologies is enclosed. In this way, some valuable knowledge (especially in terms of

semantic relations) can be added to knowledge discovery processes. In the first stage,

the particular attention was focused on pre-processing methods as well as methods for

determining indiscernibility relations and discernibility matrices, which are key notions

in rough set approaches.

Introduction and Motivation

Our research concerns information systems over ontological graphs, where information

systems are understood as Pawlak’s knowledge representation systems [1]. Nowadays,

one of the intensively developed trends of knowledge discovery is to process natural

language statements (words, concepts, etc.). The main idea is that words or concepts

are used in place of numbers, because the ability of a human is to perform many tasks

without any number processing. To effectively carry out knowledge discovery processes,

we have to consider the domain knowledge related to data semantics [2]. This knowledge

can be represented by an ontology which describes a set of concepts together with the

relationships which have been defined between them comprising the vocabulary from a

given area (cf. [3]). In [4], we proposed to enclose the domain knowledge in a form of

ontology in information systems. In this approach, attribute values are concepts that

describe objects. It was assumed that the ontology is presented, in a simplified way, by

means of the graph structure, called the ontological graph, in which, each node represents

one concept from the ontology, whereas each edge represents a semantic relation between

two concepts. Formally, a simple information system over ontological graphs consists

13
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of the nonempty, finite set U of objects, the nonempty, finite set A of attributes, the

family of ontological graphs associated with attributes from A, the information function

assigning concepts from ontological graphs associated with attributes to objects from U .

Main Features

In the developed and implemented Python toolkit for information systems over ontological

graphs, an ontological graph in the form of the OWL ontology can be associated to

each attribute in the underlying information system IS. An OWL ontology consists of

three components: classes representing concepts, individuals being instances of classes,

properties being binary relations on individuals [5]. Therefore, attribute values in

IS can be either classes (concepts) or individuals. In the toolkit, we have used the

following packages to process underlying data structures: pandas that delivers a data

frame structure to represent an underlying information system IS in a tabular form,

and owlready2 that is used to process OWL structures. For information systems over

ontological graphs, we can perform, among others, the following pre-processing procedures:

deinstantiation replacing individuals being attribute values with the classes (concepts)

whose instances they are, and generalization replacing classes (concepts) with more

general classes (concepts). One can see that, in case of information systems over

ontological graphs, we deal with more complex structures of sets of attribute values, i.e,

ontological graphs, associated with attributes, delivering attribute values (individuals or

classes). Therefore, key notions in rough set approaches (for example, indiscernibility

relation [1], discernibility matrix [6]) can be defined in more complex way. In the

presented toolkit, we have implemented methods of determining indiscernibility relations

and discernibility matrices with respect to different levels of abstraction (related to

individuals and hierarchies of classes in OWL ontologies). The presented toolkit will

be a part of a larger Python module, called OnDriML, for ontologically-driven machine

learning (cf. [7]).

References:

[1] Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer

Academic Publishers, Dordrecht (1991).
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Challenges in Descriptor-Based Information Systems and Machine

Learning by Rule Generation

Hiroshi Sakai1, Michinori Nakata2

1Graduate School of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

2Faculty of Management and Information Science, Josai International University, Gumyo, Togane, Chiba

283-0002, Japan

Extended Abstract. We combined the rough sets-based concepts by Pawlak

and Skowron, a non-deterministic information system (NIS) by Orłowska and Lip-

ski, missing values by Grzymała-Busse, and the Apriori algorithm by Agrawal to

realize the NIS-Apriori based rule generator. Some actual execution videos are in

http://www.mns.kyutech.ac.jp/~sakai/RNIA. We are now considering the following

challenges.

(Challenge 1: DbIS and rule generation) We mainly handled tabular data sets and wanted

to deal with non-tabular data sets. We propose the framework of a DbIS (Descriptor-based

Information System) in Fig. 1. A rule is a logical implication consisting of descriptors,

and we implicitly employed a descriptor [attribute, val] in tabular data sets until now. If

we define descriptors in non-tabular data sets, we may generate rules from them. Rough

Figure 1: The overview of rule generation from several types of data sets with uncertainty
via DbIS [1].
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set theory is not for only rule generation, and we see DbIS takes the role of the rough set

theory specialized for rule generation. The extension from tabular data sets to DbIS will

extend the research areas of rough sets much more.

(Challenge 2: Missing value estimation and machine learning by rule generation) The

obtained rules from data sets are applied to decision-making. They take the similar role

of regression lines in statistics. We are now considering the application of certain rules

to missing value estimation in Fig. 2.

Figure 2: The overview of machine learning by rule generation [2].

In [2], we employed the given decision attribute Dec and estimated missing values so as to

increase the accuray value of one selected certain rule (with the highest accuracy value)

Condition_part ⇒ [Dec, val]. However, we newly propose the following procedure.

1. We fix one attribute A in NIS Φ, where missing values exist.

2. We generate certain rules Condition_part ⇒ [A, val]. Here, NIS-Apriori-based

rule generation is essential because missing values usually exist in other attributes.

3. If the obtained certain rule matches the object with a missing value on the attribute

A, we estimate it as the decision attribute value val in [A, val].

4. We repeat the above 1, 2, and 3 procedures for the revised NIS Φ′.

This procedure detects hidden local dependency to the attribute A, and we may recover the

missing value due to functional dependency in database theory. We are now investigating

the validity of this procedure.
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Extended Abstract. Clusters represent groups of similar data points. Once seen as

static entities, clusters are now recognized as dynamic formations that shift and transform

over time. The study of changing clusters over a period offers insights into the underlying

patterns, trends, and shifts within data, enabling a deeper understanding of complex

phenomena in various domains [1]. Clusters can change for a variety of reasons, reflecting

the inherent dynamism underlying the data [1]:

setcounterfigure42

• Concept Drift: The fundamental concepts that define clusters may shift due to

changing conditions, introducing new trends or behaviors.

• Seasonal Patterns: Some clusters might exhibit recurring patterns over time, which

can be captured through dynamic clustering to discern cyclic trends.

• Emerging Anomalies: As data evolves, anomalies or outliers may arise, leading to

the formation of new clusters or the modification of existing ones.

• Adaptive Systems: In applications like recommendation systems or personalized

marketing, clusters can change based on user interactions and feedback.

Evolving clusters provide a dynamic lens to view complex datasets that transform over

time. This evolving perspective not only enriches our understanding of data but also

equips us with tools to make more informed decisions in an ever-changing environment.

Along similar lines, this presentation reports changes in profiles of stores for a province-

wide retailer before, during and after the pandemic. The data spans 7 years from January

2015 to June 2022. Point of sales information was available for around 106-109 stores of

the organization over the entire study period. This data consisted of stores that served

50-51 of the forward sortation areas (FSA) within Canada. An FSA is a way to designate
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a geographical unit based on the first three characters in a Canadian postal code. Table

1 shows the annual sales information from 2015 to 2021. For privacy reasons, the actual

values for sales are divided by a masked figure called X. The quantity reported is similarly

masked using a factor Y.

Table 1: Annual Sales.
Year Sales*X Quantity*Y
2015 $1,666.67 100.00
2016 $1,933.33 100.00
2017 $2,000.00 116.67
2018 $2,000.00 116.67
2019 $2,000.00 116.67
2020 $2,333.33 133.33
2021 $2,333.33 133.33

We wanted to profile a store in a given year based on the percentage of products sold

in various categories. The categories are labelled - A: Social products, B: Fashionable

products, C: Connoisseur products, D: Emerging products. The percentage of revenues

from each category was used to represent an annual pattern. The annual pattern for

a store is treated as a separate object. Each store may have up to seven patterns for

the years 2015-2021. The optimal number of clusters were determined using a sum of

scatter within clusters. The sum of scatter started rising sharply after eight clusters.

Therefore, eight clusters were deemed to be the optimal number of clusters. Eight distinct

groups were identified along with the transition of a store from cluster to cluster over

seven years. Furthermore, we also identified the transition of an FSA from cluster to

cluster and changes in the number of patterns in each cluster over the seven years. Table

2 shows the centroids of each cluster. Each column represents a cluster. The clusters

are labelled based on the revenues from each category A, B, C, D and N. For example,

A41D22B20C17 means category A resulted in 41% of the revenue, category D provided

22% of the revenue, and so on. The categories in the cluster label are arranged based on

decreasing revenue - e.g., cluster A41D22B20C17 has the highest revenue from category

A, followed by D, B, and C.

Table 3 shows the distribution of cluster membership by year as well as total. Each row in

the table shows the number of patterns belonging to the year in different clusters. The last
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Table 2: Cluster Centroids.
A41D22
B20C17

A42B30
C15D12

A44C24
B17D14

A46D21
C19B12

A46B21
C17D15

A54C20
D13B12 N B60A19

C08D06
A : Social 41% 42% 44% 46% 46% 54% 0 19%
B : Chic 20% 30% 17% 12% 21% 12% 0 60%
C : Connois-
seur 17% 15% 24% 19% 17% 20% 0 08%

D : Emerging 22% 12% 14% 21% 15% 13% 0 06%
N : Gifts 0 0 0 0 0 0 100 0

row shows the sizes of each cluster. It is interesting to note that clustering separated the

last two clusters labelled N and B60A19C08D06 as outliers. These were special-purpose

stores and correctly separated from other stores by the clustering process. The rest

of the clusters were formed organically. One can see that there is a clear distinction

between pre-pandemic and post-pandemic revenue patterns. Clusters A42B30C15D12,

A44C24B17D14, A46B21C17D15, and A54C20D13B12 disappeared and were essentially

replaced by A41D22B20C17 and A46D21C19B12. This suggested a decrease in previously

considered social products with emerging products. The clustering managed to identify

the effect of the pandemic without any explicit input regarding social behavior.

Table 3: Cluster membership by year.

Year A41D22
B20C17

A42B30
C15D12

A44C24
B17D14

A46D21
C19B12

A46B21
C17D15

A54C20
D13B12 N B60A19

C08D06 Total

2015 18 24 2 31 28 2 105
2016 2 18 24 4 30 26 2 106
2017 17 21 4 37 25 1 105
2018 1 16 17 5 39 26 2 106
2019 4 15 15 6 41 25 1 1 108
2020 44 9 4 40 8 1 1 1 108
2021 63 4 34 4 1 1 1 108
Total 114 97 105 95 190 132 3 10 746

References:

[1] OpenAI (2023). ChatGPT (Mar 14 version) [Large language model]. https:

//chat.openai.com/chat.

Keywords: No keywords

21

https://chat.openai.com/chat
https://chat.openai.com/chat


International Joint Conference on Rough Sets

Rule-based action mining from survival data

Marek Hermansa1,2, Marek Sikora1,2, Beata Sikora1, Łukasz Wróbel1,2

1Silesian University of Technology, 44-100 Gliwice, Poland

2Łukasiewicz Research Network - EMAG Institute, 40-189 Katowice, Poland

Extended Abstract. Logical rules (φ ∧ ψ) represent a simple and understandable form

of knowledge representation. In rule-based reasoning, the premise φ determines which

conditions must be satisfied for the conclusion ψ to be true. The rule premise has the

form of a conjunction of elementary conditions wi ≡ a1 ⊙ xi, where xi is an element of

the domain of the attribute ai and ⊙ is a relation symbol (e.g. =, <,≤, >,≥,∈). In the

case of survival rules, the conclusion is the estimator of a survival function (Ŝ), e.g., the

Kaplan-Meier estimator [1]. Thus, a survival rule has the following form

IF w1 ∧ w2 · · · ∧ wn THEN Ŝ. (1)

A survival action rule is a concatenation of two survival rules [2].

IF w1S → w1T ∧ w2S → w2T · · · ∧ wnS → wnT THEN ŜS → ŜT . (2)

The elementary action wiS → wiT , i = 1, . . . , n, represents a change in the value of the

attribute ai. It consists of the premise wiS of the elementary action, which specifies the

source (S) range of values of this attribute, and the conclusion wiT of the elementary

action, which specifies the target (T ) range of these values. In other words, the premise of

a survival action rule defines the transition from the source to the target representation.

This transition aims to change the survival curve contained in the conclusion of the rule.

A survival action rule induction algorithm based on the sequential covering strategy is

presented in [2]. In this paper, two strategies for applying the induced rules to recommend

changes in attribute values are presented. The main objective of the recommendation is

to change the attribute values of the considered example (e.g., a test example) such that

its estimated survival time is significantly different from the estimated time before the
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changes.

We present two strategies for recommendation mining: a global strategy based on a set of

induced action rules, and a local strategy based on any survival model [5] (e.g., Random

Survival Forest). In the local strategy the survival model is called the arbiter model

(AM).

In the global strategy – as in the standard action rule induction [6] – an example may be

covered by several rules, to find recommendation it must be decided which elementary

actions will be applied and to what extent (how large the change in attribute values

should be). In the local strategy, it must be decided which attribute values should be

changed to make the survival time estimated for the test example by AM significantly

different before and after changing the attribute values.

Figure 1: An exemplary survival rule. The gray, red, and green curves represent overall
survival, the left rule, and the right rule, respectively. The rule illustrates how changes in
the values monitored by the two sensors, SensorM1 and SensorM2, affect the estimated
time of reliable operation of a device. The rule was induced based on the well-known
benchmark data set FD001

Both the global and local strategies employ a method of computation of an approximate,

quasi-shortest object-related decision reduct [3]. The reduct is searched in decision table
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with decision attribute reflecting discretized survival time. The recommendations are

built based on the attributes included in the reduct. The presented strategies can be

considered as actionable knowledge discovery techniques [4].

The experiments were performed on benchmark data sets. Since in most cases it is not

possible to verify whether the recommended attribute value changes affected the change

of the survival time of test examples, the independent survival model (ISM ) for result

verification was used. In the experiments, we verify whether the survival times - for

examples with attribute values changing - estimated by our strategies and ISM do not

differ statistically. 10-fold cross-validation was used as a method to validate the model.

Table 1: Method results for the selected 12 datasets obtained using 10-fold cross-validation
and the local strategy. The columns indicate: the name of the dataset (Dataset); the
average number of survival action rules for the dataset (nR); the average number of
actions in the rule (nA); the right rule consistency score - the percentage of examples for
which the p-value is less than 0. 05, testing the null hypothesis that the curve for the
right side of the recommendation is identical to the curve derived from the independent
survival model (Diff.); evaluation of the significance of the changes made - the percentage
of examples for which the p-value is less than 0.05, testing the null hypothesis that the
curves, before and after the recommendation, are identical (Sign.)

Dataset nR nA Diff. Sign.
bmt-ch 4.7 2.5 100.0 94.2
follic 7.2 1.9 100.0 89.6
GBSG2 13.8 3.3 100.0 92.9
hd 10.1 1.2 100.0 99.8
lung 7.1 2.8 100.0 92.1
Melanoma 3.9 2.6 100.0 94.7
mgus 4.1 3.2 99.2 90.0
pbc 6.8 2.7 100.0 92.1
std 15.1 4.2 100.0 80.4
uis 8.0 3.5 100.0 99.8
whas1 6.9 2.5 99.2 100.0
whas500 7.9 4.3 100.0 97.2
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Extended Abstract. Recently, one notable embedding-based temporal knowledge

graph completion (TKGC) model is DE-SimplE (DE) which introduced by Goel et al.

(2020). This model provides the characteristics of entities at any point in time. In this

manuscript, we improve the DE-SimplE model with two components mentioned by Zhang

et al. (2022) that can enhance the connections of facts over a period of time as well as

combine the relation’s meaning and temporal information.

Goel et al. [1] introduced an diachronic entity embedding (DE) function whose input is a

pair of an entity and a timestamp and output is a hidden representation. The advantage

of DE is that it could be combined with any KGC model to become a TKGC model.

By experiments, the authors in [1] showed that relations might evolve at a very lower

rate or only negligibly. Therefore, they only used a static representation for relations.

As the same, the authors in [2] also used the static representation for relations. In this

research, we show that the timestamps play important role for relations by combining

the advance of two components which were mentioned by Zhang et al. [3]: The shared

time window (STW) enhances the correlation between adjacent timestamps and the

relation-timestamp composition (RTC) which integrates temporal features to the semantic

features of relations.

By using STW, we modified the DEEMB function in [1] as follows:

zzzτ
e

′ =


tttc[n] + aaae[n]σ(wwwe[n]τ + bbbe[n]), if 1 ≤ n ≤ γd

aaae[n], if γd ≤ n ≤ d

(1)
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where aaae ∈ Rd and wwwe, bbbe ∈ Rγd are learnable representations of entity e, σ is an activation

function, and tttc ∈ Rγd is the new component that indicates the features of cycle c which

contains τ . For modeling relation, we adopt RTC which fuses both semantic information

and temporal information through the ◦ element-wise product.

zzzτ
r

′ = zzzr + zzzr ◦ tttτcomp (2)

where zzzr ∈ Rd is the representation of relation r and tttτcomp ∈ Rd is a learnable vector

related to timestamp τ .

Our proposed model combines RTC and STW in the DE-SimplE model by using Equation

(1) to model entities and Equation (2) to model relations. We compare the performance

of our model with that of the DE-SimplE model, considered the best model in [1]. We

also evaluate our proposed model using three datasets: ICEWS14, ICEWS05-15, and

GDELT, with the hyperparameters from [1]. Since GDELT is very large, we run this

dataset for 100 epochs instead of the 500 epochs mentioned in [1]

Table 1: Experimental results on ICEWS14, ICEWS05-15, and GDELT.
Model ICEWS14 ICEWS05-15 GDELT

MR ↓ MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 ↑ MR ↓ MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 ↑ MR ↓ MRR ↑ Hits@1 ↑1 Hits@3 ↑ Hits@10 ↑

DE-SimplE [1] - 0.526 41.8 59.2 72.5 - 0.513 39.2 57.8 74.8 - 0.230 14.1 24.8 40.3

Proposed Model 226 0.549 45.3 61.0 72.3 111 0.543 42.2 61.3 77.6 60.35 0.222 13.7 23.7 38.6

Our final results are reported in Table 1. Best results are represented in bold font. Based

on experimental results from Table 1, we demonstrate that the timestamps factor plays a

crucial role in enhancing the performance of the DE-SimplE model for TKGC.
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Extended Abstract.

1. Introduction

Mining inter-sequence patterns represents a novel and crucial research avenue within

data mining. However, this research model has limitations, notably in generating a large

number of frequent patterns. This places significant demands on both storage space and

processing time. Given the overwhelming amount of information, pro-cessing it becomes

a formidable challenge. Consequently, our research has concen-trated on generating

frequent patterns based on user-defined criteria, thereby curtail-ing the proliferation

of such patterns. In light of this approach, we have introduced an algorithm named

DBV-ISPMIC. Furthermore, we have developed a property and leveraged it to propose

an enhanced algorithm to reduce the need for candidate check-ing. Lastly, we put forth

the pDBV-ISPMIC algorithm, representing an optimized parallelization approach for the

DBV-ISPMIC algorithm. The pDBV-ISPMIC algorithm demonstrates that employing a

parallel system yields notable improvements in algorithm execution time. Furthermore, it

underscores the superior performance of the DBV-ISPMIC algorithm compared to other

methods in mining inter-sequence pat-terns with itemset constraints, as substantiated by

our experimental results.

2. Contributions

In this study, we aim to solve the task of inter-sequence pattern mining with itemset

constraints. Unlike using itemset constraints for mining sequence patterns, this mining

task requires more complex processing because many candidates are generated during

the mining process. Our significant contributions are as follows.
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1. Based on the EISP-Miner algorithm [1] and a using dynamic bit vector data

structure [2], we state the problem of inter-sequence pat-tern mining in combination

with itemset constraints.

2. We then suggest a proposition to help reduce candidate checking during sequence

expansion according to the EISP-Miner algorithm, thus reducing the search space

for inter-sequence pattern mining with itemset constraints.

3. Next, an algorithm named DBV-ISPMIC is developed to discover constraints-based

inter-sequence patterns. A parallel version of the DBV-ISPMIC algorithm, named

the pDBV-ISPMIC algorithm, was presented.

4. Finally, we conduct experiments with various databases to evaluate the proposed

method.

3. Basic concepts and problem statement

Definition 1 (items, itemsets, sequences, sequence database). Let t be the set of items,

t = u1, u2, ..., um where ui is an item (1 ≤ i ≤ m). A sequence s = ⟨t1, t2, t3, ..., tn⟩ is an

ordered list of itemsets where ti ⊆ t (1 ≤ i ≤ n) is an itemset. A sequential database

D = s1, s2, s3, ..., sw where w = |D| is the number of sequences in D and si (1 ≤ i ≤ w)

is a pair of values ⟨Dat, Sequence⟩, in which Dat is the property of si used to describe

contextual information based on the time of the transaction.

Definition 2 (Megasequence). Given a list of k sequences ⟨d1, s1⟩, ⟨d2, s2⟩, ..., ⟨dk, sk⟩ in

the sequential database. A megasequence with k ≥ 1 is denoted as Ψ = s1[0] ∪ s2[d2 −

d1] ∪ ...∪ sk[dk − d1]. From the example database shown Table 1, with maxspan = 1 and

DAT = 1 as the reference point, we have a list of megasequences shown in Table 2.
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Table 1: An example of creating a sequential database (b) from a customer dataset (a).

Table 2: Converting a sequential database to megasequences.

Definition 3 (1-patterns extension). Given two frequent 1-patterns α = ⟨u⟩[0] and

β = ⟨v⟩[0]. α is joinable to β in any instance and there are three types of join opera-tion:

(1) itemset-join: α∪i β = ⟨(u, v)⟩[0]|⟨(u, v)⟩[0]; (2) sequence-join: α∪s β = ⟨(u, v)⟩[0]; (3)

inter-join: α ∪t β = ⟨u⟩[0]⟨v⟩[x]|1 ≤ x ≤ maxspan.

For example, givenmaxspan = 2, ⟨C⟩[0]∪i⟨D⟩[0] = ⟨(CD)⟩[0]; ⟨C⟩[0]∪s⟨D⟩[0] = ⟨CD⟩[0];

and ⟨C⟩[0] ∪t ⟨D⟩[0] = ⟨C⟩[0]⟨D⟩[1], ⟨C⟩[0]⟨D⟩[2].

Definition 4 (k-patterns extension). Given 2 frequent k-patterns α and β , k > 1,

then subk,k(α) = (u)[i] , and subk,k(β) = (v)[j]. α is joinable to β if sub1,k−1(α =

sub1,k−1(β) and i ≤ j, which yields three types of join operation: (1) itemset-join:

α ∪i β = α+i (v)[j]|(i = j) ∧ (u < v); (2) sequence-join: α ∪s β = α+s (v)[j]|(i = j); (3)

inter-join: α ∪t β = α+t (v)[j]|(i < j).
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For example, ⟨BC⟩[0] ∪i ⟨BD⟩[0] = ⟨B(CD)⟩[0], ⟨BC⟩[0] ∪s ⟨BD⟩[0] = ⟨BCD⟩[0], and

⟨BC⟩[0] ∪t ⟨B⟩[0]⟨D⟩[2] = ⟨BC⟩[0]⟨D⟩[2].

Definition 5 (Prefix). A pattern β = ⟨b1, b2, ..., bm⟩ is called a prefix of pattern

α = ⟨α1, α2, ..., αn⟩ if and only if bi = αi for all 1 ≤ i ≤ m− 1, bm ⊆ αm, m < n.

For instance, the prefixes of pattern ⟨D(BC)B⟩[0] are: ⟨D⟩[0], ⟨DB⟩[0] and ⟨D(BC)⟩[0].

Thus, based on this definition, any sequence would be the prefix of its extended sequences.

Definition 6 (Problem statement). Given a sequence database D, the minimum support

(minsup), and a set of constraint itemsets IC = c1, c2, c3, ..., ck. The task of inter-

sequence pattern mining with an itemset constraint is to discover all frequent sequences

α = α1[w1], α2[w2], ..., αm[wm] such that ∃αi[wi] ∈ α, ∃bj ∈ IC : bj ⊆ αi.

For instance, let IC = (C), (E), the sequence ⟨C(AB)⟩[0]⟨C(ABC)A⟩[1] satisfies the

constraint whereas the sequence ⟨AD⟩[0]⟨A⟩[1] does not.

4. Proposed algorithm

4.1 DBV-ISPMIC algorithm

Figure 1: The extended tree of patterns corresponding to the example database.
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4.2 Parallel DBV-ISPMIC algorithm

Figure 2: Example of using parallel processing for ISP-tree extension.

5. Experimental databases

Figure 3: Runtime.
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Figure 4: Memory usage.

Figure 5: Parallel method for efficient mining of inter-sequence patterns with itemset
constraints.
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Extended Abstract. Given an information system A = (U,A) [1,2], using the classical

rough set model a set of objects from U (or a concept) can be described in terms of three

regions, namely positive region, negative region and boundary region of the concept.

However, in practice going beyond such approximation more finer tuning techniques are

required so that some important data about the so-called boundary objects or negative

examples can also be restored. Variable Precision Rough Set (VPRS) model [3] provides

a generalization of the classical rough set model by incorporating a probabilistic measure

as a threshold for tuning the inclusion of an object as a positive example. Accordingly

different aspects of data reduction [4] come up. In the context of a decision system,

i.e. (U,A ∪ {d}) where d is a designated attribute denoting decision, the aspect of data

reduction is to restore the significant character of the decision classes (i.e., sets of objects

D1, D2, . . . Dr having specific decision values from a value set, say Vd = {v1, v2, . . . , vr})

as much as possible encoded in the granules, created with respect to the information

signatures of the objects. In this regard, the first step is to design a decision valuation in a

way that the information about the decision classes obtained from a given decision system,

say (U,A ∪ {d}), can be encoded in that decision valuation, say νd, in a compressed

way. Then the next step is to look for a subset of attributes which can preserve the

information compressed in νd with respect to the whole set of attributes. Following this

line of thought there can be many decision valuations focusing on different aspects of

decision making and consequently different notions of decision reduct obtained based on

them.
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A decision valuation is a function which assigns a value from a decision space, say D, to

the objects of a decision system based on their information signature. The meaning of D

may depend on the way of designing a decision model to infer about decision values. That

is, if VA denotes the set of all information signatures (i.e., the vectors of values describing

objects with respect to the conditional attributes) available in A for any X ⊆ A, then

ν : VA 7→ Dν represents a decision valuation [5] having decisions from the subspace Dν of

D.

For example γ-decision reduct looks for a reduced set of attributes focusing only on

the consistent objects of a given decision system. Thus, the information regarding the

inconsistent object of a data table is completely ignored while making decision. In

contrary to that, ∂-decision reduct stores decision related information of all the objects

belonging to a particular equivalence class. So, the respective decision valuations can be

presented as follows.

Example 1. Given A = (U,A ∪ {d}), the generalized decision valuation (or ∂-decision

valuation in short) ν∂ : VA 7→ D∂ is defined as follows; for any vector −→x ∈ VA of values

on attributes X ⊆ A:

ν∂(−→x ) = {d(u′) : InfX(u′) = −→x } (1)

whereby D∂ denotes the space of all non-empty subsets of decision values.

Example 2. Given A = (U,A∪ {d}), the positive decision valuation (γ-decision valuation

in short) νγ : VA 7→ Dγ is defined as:

νγ(−→x ) =

 vk if ν∂(−→x ) = {vk}

? otherwise
(2)

whereby Dγ is the set of all decision values along with the dummy value “?”. Ex-

ample 2 models a scenario in which decision can be made only in the case of full

certainty/consistency; otherwise we may attach a dummy value “?” where the value “?”

may be compared to do not care following [6]. The decision valuation νγ is the base
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function for classical rough set model for positive region, whereas we will discuss that a

generalized version of νγ , called νp, is the base function for VPRS model. νp model in

one way helps to overcome the limitation of classical νγ model by not throwing out all

inconsistent cases from further steps of decision making. However, there still remains the

possibility of improving the model and we focus on generalizing and combining νγ with

other decision valuations in a way so that we get rid of some limitations of VPRS model

as well.
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Extended Abstract. Attribute importance refers to a vector of weights that are

assigned to attributes and describe the effect on the overall performance or outcome

of a model, system, or process. The concept is commonly used in a variety of fields,

including machine learning, statistics, data analysis, and decision making. In machine

learning, the importance of attributes helps determine which features have the greatest

impact on model predictions. Attribute importance and ranking can have several benefits

including feature selection, model interpretability and dimensional reduction. Attribute

importance can be calculated by using many different techniques including Random

Forest Classifier [1] and Permutation Feature Importance. Using the Random forest

algorithm, the feature importance can be measured as the average impurity decrease

computed from all decision trees in the forest. The second method focuses on observing

how predictions of the ML model change when we change the order of variables. One of

the applications of Rough set theory in machine learning is the so-called feature selection

by means of finding a reduct set of attributes [2]. The concept of reducts can be used

for feature ranking in natural way [3]. In [4], the RAFAR (Rough-fuzzy Algorithm For

Attribute Ranking) methodology has been presented. This is a hybrid approach that

combines discernibility relation of the rough set theory and the ranking method from

intuitionistics fuzzy [5] theory. The RAFAR methodology consists of two main steps: (1)

construction of a fuzzy pairwise comparison matrix (called Intuitionistic Fuzzy Preference

Relation (IFPR)) for the set of attributes and (2) converting this matrix into the optimal

consistent weight vector, which is the the resulting vector of attribute importance values.

The experiment result on benchmark data sets were very promising. However, it exposes

certain shortcomings that will improve in this paper. The new research results include:

1. Uncertain Preference Relation and Ranking models: The uncertainty
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Figure 1: The accuracy comparison between five attributes ranking methods using 9NN
and the SVM classifiers on WDBC dataset.

of the preference relation can be represented by either fuzzy or intuitionistic

fuzzy or interval-value fuzzy set theory. The key difficulty of this research lies

in modeling the pseudo-transitivity of the uncertain preference relations. This

paper presents a new ranking method based on interval-valued fuzzy vectors, i.e.,

w = ([l1, r1], · · · , [ln, rn]), where 0 ≤ li ≤ ri ≤ 1 for i = 1, · · · , n. This method

operates on the concepts of lower and upper bounds of the fuzzy preference relation,

which is very close to the main philosophy of rough sets.

2. Scalability of the RAFAR methodology: One of the disadvantages of the

RAFAR method in [4] is the time complexity of the matrix calculation step, which

is O(n2 · m logm), where n is the number of attributes and m is the number of

objects. In this paper, a new methods of generating a comparison matrix that

takes into account not only the discernibility strength of a single attribute, but

also its potential to be combined with other attributes is developed. This paper

presents several randomized techniques that can be applied for data sets with large

number of attributes as well as for data sets with large number of objects. These

modifications make RAFAR more scalable, but still maintain the high level of

accuracy.

The research results in this paper are both theoretical and empirical. Some interesting

properties of the class of all uncertain preference matrices, like convexity or positive

definiteness, will be proved, therefore the corresponding convex optimization problems

can be efficiently solved. The experiment results on benchmark data sets (see Figure
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1) are showing that, in many cases, the proposed method outperforms other existing

ranking methods.
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Extended Abstract. In this study, we propose a probabilistic rough set model based

on Bayesian learning. Reflecting granularity of information, we define a probabilistic

model for classification of a target set. Then, we train a rough membership function

by Bayesian learning, namely the function is defined by the predictive distribution of

the classification under the condition that training data are known. Furthermore, we

use a model selection technique of Bayesian learning in order to search the best rough

membership function. After the learning, an algorithm of attribute reduction or rule

induction is performed using approximation regions derived from the obtained rough

membership function.

Rough set models [1] can be used as a data analysis tool to deal with uncertainty and/or

inconsistency induced by indiscernibility and/or granularity of information. If attributes

describing data are incomplete, a set of objects can be described clearly. In that case,

the theory of rough sets provides lower and upper approximations to express uncertainty

of the classification. Furthermore, rough set models are used to solve tasks of machine

learning and data mining. Attribute reduction and rule induction are two major solutions

for machine learning. Those algorithms are derived by reducing redundant attributes with

preserving the positive region or structure of approximations [2]. Recently, explainability

of machine learning methods has been attracting attention. Rough set approaches can

be a solution to explainability.

The original rough set model does not tolerate to errors and/or noise in data, because

of its strict application of set-operations. There are several probabilistic extensions of

the rough set model to handle such statistical matters. The variable precision rough

set model [3] and its generalization are the most popular probabilistic models, in which

a quantity of uncertainty is measured by a rough membership function. This function
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can be interpreted as the probability that an object x is in the target set Y under the

condition that the values of x are known. The Bayesian rough set model [4] is an another

rough set model based on a probabilistic framework. in which x is assigned to the lower

approximation when the posterior of x ∈ Y given the description of x is greater than the

prior.

Consider a situation that we want to apply attribute reduction to a data set. In that

case, there are few objects in every equivalence (indiscernibility) class. Hence, the rough

membership function is not reliable for classification of objects, especially prediction of

unseen objects. We consider it is a drawback of the rough set approach. In the machine

learning literature, classification models are regularized to avoid overfitting and improve

its generalization capability. Bayesian learning [5] is one approach of regularization,

in which a mechanism of classification is expressed by a probabilistic model and it is

regularized by a prior distribution of parameters. In general, probabilistic rough set

models does not have the functionality of regularization.

In this study, we will propose a probabilistic rough set model based on Bayesian learning.

We define a probabilistic model reflecting granularity of information. Then, a rough

membership function is defined the probability of x ∈ Y with the fixed model parameters

based on the maximum a posterior probability, namely parameters are determined by

maximizing the posterior probability. Our approach is similar to the naive Bayesian

rough set model [6], however, we use a more sophisticated probabilistic model. We remark

that our model is not a replacement of the decision-theoretic rough set model [6]. We

can combine these two models in the view of the statistical decision theory.

Furthermore, to search the best rough set model (rough membership function), we use a

model selection technique of Bayesian learning, where models are varied according to

attribute subsets. After the learning, we will perform an attribute reduction algorithm

using the obtained rough membership function, and enumerate attribute subsets mean-

ingful for the classification. In the presentation, we will clarify the advantage of the

proposed approach by using numerical examples.
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Extended Abstract. We investigate non-parametric and parametric Monte Carlo

methods used to determine the statistical significance of scores of variables in information

systems for which the null distribution is unknown.

The power of Monte Carlo tests was evaluated, which allowed us to estimate the compu-

tational complexity of the test for a desired power. The parametric approach, assuming a

specific form of the tail of the null distribution, proved to be much more computationally

efficient than the commonly used non-parametric one.

Introduction

Data sets that describe real-life phenomena often consist of thousands of variables involved

in millions of potential interactions. Thus, feature selection and dimensionality reduction

are required to make the results of analysis explainable. To this end, various methods

are used, which yield importance scores of the variables under scrutiny. However, the

significance of the scores is hard to determine since the null hypothesis distribution is

often unknown. To this end, one can apply Monte Carlo method and compare scores of

the original variables with those computed for random (contrast) variables.

Non-parametric and parametric Monte Carlo tests

In the non-parametric Monte Carlo method the test statistic is defined as a rank k of

the score x among Nc scores {xc} of the contrast variables [1]. The p-value, defined as a

probability that the rank is at least k for x drawn from the same distribution as {xc}, is

p(k) = k/(Nc + 1). For a significance level α = 0.05 with FWER correction for multiple

tests, Nc ≥ 20N is needed, where N is the number of original variables. This can be

unacceptably computationally expensive.

As an alternative, a parametric method can be used, that assumes a specific form of the

null distribution, or its far tail only, up to unknown parameters. In many cases these
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parameters can be estimated with a sufficient precision using a relatively small number

of contrast variables.

Here, we investigate parametric Monte Carlo tests and estimate the number of contrast

variables needed to achieve a reasonable power of the test.

A general framework for Monte Carlo test

The p-value of x given {xc}, for both non-parametric and parametric approach, can be

found as the predictive posterior distribution of x. We first define p-value p̂(x|θ) as a

function of parameters θ, then find the posterior distribution of the parameters f(θ|{xc}).

The eventual p-value is obtained by integration of p̂ over θ, according to the law of total

probability.

The exponential and power tail

Hill in [2] proposed the following null distribution of x above some point of x0:

p̂(x|β, γ) = βe−γ[ϕ(x)−ϕ(x0)],

where ϕ(x) is a known function of x. In particular, ϕ(x) = x corresponds to the

exponential tail; ϕ(x) = log(x) yields the power tail; ϕ(x|κ) = xκ, with a third parameter

κ, approximates other cases. The posterior distributions of β, γ are Beta and Gamma

distributions, respectively. With the parameter κ, the joint distribution of κ, γ can be

approximated as a bivariate normal distribution.

The power of Monte Carlo tests

The loss of power of a Monte Carlo statistical test with respect to the case of a known

null distribution is a probability of confirming the null hypothesis when the exact p-value

is evenly distributed below the significance level α:

∆B(α) ≡ P (pMC > α | pexact ∼ U(0, α))

46



International Joint Conference on Rough Sets (IJCRS 2023)

The power loss can be calculated exactly or approximated as:

∆B(α) ≈ 1√
2π

σ(x)
α

∣∣∣∣
x:µ(x)=α

where µ and σ are the expectation and standard deviation of the posterior distribution

of hypothetical p-value p̂(x), defined above. This allows us to estimate Nc needed for

the desired power of the test, see Table 1. The parametric methods allow us to reduce

significantly the number of contrast variables, and hence the computational complexity.

Table 1: The number of contrast variables required to achieve 10% test power loss for
α = 0.05 with Bonferroni correction.

N 100 1 000 10 000 100 000
Non-parametric 32 000 320 000 3 200 000 32 000 000
Exponential 920 1 561 2 372 3 351
Normal 1 188 2 322 3 857 5 801
Exp. tail 10% 4 627 9 354 15 769 23 871
Three-par. tail 10% 8 834 23 762 48 957 86 187
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Extended Abstract. Machine learning (ML) is gaining popularity due to the proven

accuracy of ML models in many domains. However, in practical applications, many

factors may affect the quality of the developed model. Therefore, besides high accuracy,

it is expected to assure more quality criteria, such as stability and resilience. The level of

resilience depends primarily on the information contained in the data.

Research in this area leads to resilient feature selection, such as r-C-reducts, that preserve

their properties even in case of loss of up to ’r’ attributes [1]. However, in some situations,

r-C-reducts cannot be calculated. For instance, in predicting increased seismic activity

in hard coal mines [2], there is a strong dependency on a few conditional attributes, the

loss of which cannot be compensated by other features, and the only feasible solution of

assuring prediction quality is to ensure this data is always available. In this study, we

present the algorithm searching for ρ-resilient reducts - a less rigid approach for resilient

feature selection that overcomes this limitation.

In the developed algorithm, we derive N approximate decision reducts. We represent

each reduct as a feature vector R ∈ {0, 1}|A| where ‘1’ indicates that a particular feature

belongs to a reduct R. To provide an expected resilience level and derive possibly

dissimilar subsets of attributes [3], we cluster the extracted N reducts (encoded as

{0, 1}|A| vectors) with K-means. Subsequently, we merge all reducts within each cluster

with the logic ‘OR’ operator on their {0, 1}|A| representation. Having K = ρ, we end up

with ρ dissimilar subsets of attributes, each containing some surplus yet similar features.

Let us present this concept in the following toy example. Let S =
(
U,A ∪ {d}

)
be a

decision table, where A = {a, b, c, d, e, f, g}. Let the expected resilience level ρ = 2.

Let’s assume the triples correspond to reducts: {a, b, c}, {a, b, d}, ... We may notice that

attribute sets {a, b, c}, {a, b, d} are relatively similar. Furthermore, we may infer that
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attributes ‘c’ and ‘d’ provide similar information, complement to {a, b}. When we cluster

those attribute sets together we end up with a superreduct R1 = {a, b, c} ∪ {a, b, d} ⊆ A,

with a slight redundancy of information (e.g., in terms of discernibility). Similarly, for

with R2 = {d, e, f} ∪ {d, e, g}. Furthermore, we may notice that R1 and R2 are dissimilar

(only one common attribute ‘d’). Therefore, fitting two models on R1 and R2 attribute

subsets should provide us with a certain level of resilience and diversity. We may notice

that, unlike r-C-reducts, the resilience level is not guaranteed, yet only expected.

Ultimately, we aim to construct the complete model training and ensemble blending

procedure that allows for optimizing several quality criteria and taking into account

the robustness and resilience of the ensemble blended. Here, we adapt ε-constrained

scalarization for the investigated criteria, but instead of choosing a single model, we

blend the ensemble of several Pareto-optimal solutions. Our method enables training

models on possibly dissimilar subsets of attributes increasing the variety of different

models within an ensemble and leading to a more robust, stable, and resilient ensemble.

To show the particular qualities of our solution, we performed a set of experiments on

data from the logistics industry [4]. The preliminary experimental study showed that our

method yields great results and significantly improves the resilience of the ensemble.

In future research, we plan to apply more advanced feature and instance selection

techniques, incorporating experts’ knowledge into the machine learning processes, or

ensuring the ensemble diversity more explicitly by various feature space granulations [3,

5]. It is important to also show more theoretical properties of the developed construct

and to conduct experimental analysis on a more significant number of real data sets from

various industries.

Acknowledgement: Research co-funded by Polish National Science Centre (NCN)

grant no. 2018/31/N/ST6/00610.

References:

[1] Grzegorowski, M., Ślęzak, D. (2019). On resilient feature selection: Computational

foundations of r-C-reducts. Information Sciences, 499, 25-44.

[2] Janusz, A., Grzegorowski, M., Michalak, M., Łukasz Wróbel, Sikora, M., Ślęzak,

49



International Joint Conference on Rough Sets

D. (2017). Predicting Seismic Events in Coal Mines Based on Underground Sensor

Measurements. Engineering Applications of Artificial Intelligence, 64, 83-94.

[3] Grzegorowski, M., Janusz, A., Ślęzak, D., Szczuka, M. S. (2017). On the Role

of Feature Space Granulation in Feature Selection Processes. In J.-Y. Nie, Z.

Obradovic, T. Suzumura, R. Ghosh, R. Nambiar, C. Wang, H. Zang, R. Baeza-

Yates, X. Hu, J. Kepner, A. Cuzzocrea, J. Tang, M. Toyoda (Eds.), 2017 IEEE

International Conference on Big Data, BigData 2017, Boston, MA, USA, December

11-14, 2017 (pp. 1806-1815). IEEE Computer Society.

[4] Kannout, E., Grodzki, M., Grzegorowski, M. (2022). Considering various aspects of

models’ quality in the ML pipeline - application in the logistics sector. In M. Ganzha,

L. A. Maciaszek, M. Paprzycki, D. Slezak (Eds.), Proceedings of FedCSIS’22, Sofia,

Bulgaria, September 4-7, 2022 (Vol. 30, pp. 403-412).

[5] Grzegorowski, M., Litwin, J., Wnuk, M., Pabis, M., Marcinowski, L. (2023).

Survival-Based Feature Extraction - Application in Supply Management for Dis-

persed Vending Machines. IEEE Trans. Ind. Informatics, 19(3), 3331-3340.

Keywords: No keywords

50



International Joint Conference on Rough Sets (IJCRS 2023)

Robust Aggregative Feature Selection to gain insight into the data

Radosław Piliszek1, Witold R. Rudnicki2,1

1Computational Centre, University of Białystok, Białystok, Poland

2Institute of Computer Science, University of Białystok, Białystok, Poland

Extended Abstract.

Introduction

Rough sets present a very useful, formal mechanism to derive knowledge from data.

Presented on synthetic data, they clearly show the desired properties. However, real-

world data, especially biomedical data, require proper curation before analysis. It is

known that rough sets work better when the data is free from noise, both irrelevant

and redundant features. Irrelevant only blur the view as they can only add the noise.

Redundant features, while not irrelevant in principle, bring information that is already

present in other features. Their inclusion may reduce the effects of the random noise,

however, at the price of adding complexity. Thus, pre-filtering is of utmost importance.

Moreover, to be able to gain direct insight into the data, the original features must be

preserved - thus, feature selection is chosen as opposed to feature extraction. However,

well-established feature selection methods may not offer enough stability in their results

[3]. Moreover, the application of minimal-optimal methods to eliminate redundant

variables contributes to another problem - due to their construction, they often introduce

significant overfit.

Proposed solution

To mitigate the issues described above, we propose a novel method of feature selection

we call Robust Aggregative Feature Selection (RAFS) and an accompanying feature

dissimilarity measure - Symmetric Target Information Gain (STIG) - that is rooted in

information theory and accounts for both synergy and redundancy effects. The STIG

measure is defined using conditional entropies with respect to the decision variable D

and the examined variables X and Y :
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STIG(D|X,Y ) = H(D|X) +H(D|Y ) − 2H(D|X,Y )
2

The RAFS method depends on hierarchical clustering with the chosen measure (such as

STIG) to reduce the dimensionality. It ensures robustness by employing an internal cross-

validation scheme and result aggregation based on cluster representatives’ popularity.

Table 1: Jaccard Score (JS) and Consistency Score (CS) for RAFS with STIG versus
other established methods. FDR pre-filtering correction (level 0.10) has been applied
and n = 8 variables were chosen. Best scores are bolded.

The proposed method has been applied to various real-world datasets, including the

BLCA dataset, for which results are shown here. The BLCA dataset has a binary decision

variable and contains 38404 continuous variables describing RNA-seq gene expression for

476 patients. The method has been validated in rigorous external cross-validation. The

stability results based on well-established metrics [1, 2] are presented in Table 1.

Figure 1: Random forest AUC results for different numbers (n) of variables taken for
RAFS with STIG and other established methods. The upper plot is for Holm correction
(level 0.05) in the pre-filtering stage, and the lower - FDR (level 0.10).

RAFS outperforms the alternatives by a considerable margin. Similarly, it outperforms
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the alternatives in terms of classification accuracy. We postulate both aspects are

necessary to gain the correct insight. Noticeably, the mRMR method, while being the

best alternative in terms of stability, is worst in terms of classification accuracy with

FDR pre-filtering (its line is below the plot threshold of 0.6).
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Extended Abstract. We introduce granular spectrum of the object space presented in

Figure 1 which is determined by granular approximation operators based on arbitrary

coverings of the object space. These operators were introduced in [1] and are presented

below:

G∀(X) := {a ∈ U : ∀A ∈ Gr(a)A ⊆ X} G∃(X) := {a ∈ U : ∃A ∈ Gr(a)A ∩X ̸= ∅}.

G∃(X) := {a ∈ U : ∃A ∈ Gr(a)A ⊆ X} G∀(X) := {a ∈ U : ∀A ∈ Gr(a) A ∩X ̸= ∅}.

where Gr(a) := {A ∈ Gr(U) : a ∈ A} and Gr(U) is a family of granules covering space

U . One can note that pairs of operators presented above are pairs of dual operators,

for example G∀(X)∁ = G∃(X∁). First two operators were investigated in [2] where

operator G∃ was presented in a new equivalent form based on biting procedure. All of

four operators presented above were reintroduced and developed in [3].

Figure 1: Granular spectrum of space (U,Gr(U)) determined by subset X ⊆ U .

The granular spectrum presented in this paper consists of five elements which take the
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specific forms for every subset X of the object space in the following way: the positive

certainty region takes the form of G∀(X) , the positive partial uncertainty takes the

form of G∃(X) \ G∀(X). Analogously the negative certainty region and the negative

partial uncertainty region take the forms of G∀(X∁) and G∃(X∁) \G∀(X∁) respectively

and finally the total uncertainty region takes the form of U \ [G∀(X) ∪G∀(X∁)].

We investigate the presented approximation operators without posing any conditions on

the nature of granules. We also discuss some earlier definitions of rough set approximations

known from the literature [4-8] and we show in what sense they are special cases of our

framework.
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Extended Abstract. We continue our research on generalized decision functions [1].

Our previous findings in this area were summarized in [2]. One of the topics recalled

therein was the task of building the ensembles of complementary reducts. This task can

be also referred as the attribute decomposition problem and it was analyzed earlier in [3].

Generalized decision functions were originally introduced for decision tables A = (U,A ∪

{d}) consisting of categorical attributes A ∪ {d}, where d /∈ A is a distinguished decision

attribute. Formally, for a given subset of attributes B ⊆ A, the generalized decision

function ∂B assigns each object u ∈ U with a set of decision values occurring for all

objects which are indistinguishable (indiscernible) from u subject to its values on B. Let

us denote by B(u) a vector of values of attributes a ∈ B occurring for u. Then, for each

u ∈ U , we can express ∂B(u) as ∂B(u) = {d(u′) : u′ ∈ U,B(u′) = B(u)}.

Generalized decision functions are closely related to rough set approximations of decision

classes in decision tables. They can be used to express non-determinism of the rough-

set-based decision models and they are helpful to compare the theory of rough sets with

other approaches to uncertainty management [4]. To emphasize the meaning of the

distinguished attribute d, we can write ∂d|B instead of ∂B. We can also consider decision

tables A = (U,A ∪D) with multiple decision attributes d ∈ D and redefine generalized

decision functions as collecting the sets of possible (for objects indistinguishable from u)

vectors of decision values, i.e. ∂D|B(u) = {D(u′) : u′ ∈ U,B(u′) = B(u)}.

Now, let us consider two subsets of attributes B1, B2 ⊆ A, such that B1∪B2 = A. When

we consider generalized decision functions induced by each of those subsets separately,

we can observe inclusions ∂D|B1(u) ⊇ ∂D|A(u) and ∂D|B2(u) ⊇ ∂D|A(u). We can surely
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observe also inclusions of the form ∂D|B1(u) ∩ ∂D|B2(u) ⊇ ∂D|A(u). Any strict inclusion

of this kind means that we lose (some part of) ability to reason deterministically about

objects u ∈ U when using smaller subsets of attributes. However, if we choose the subsets

B1, B2 ⊆ A in such a way that the equality ∂D|B1(u)∩∂D|B2(u) = ∂D|A(u) is satisfied for

each u ∈ U , then we can say that the generalized decision model based on ∂D|A can be

decomposed onto two simpler models based on ∂D|B1 and ∂D|B2, which are complementary

to each other, i.e., those simpler models may lose some information locally but they

provide the same information as ∂D|A when combined together.

In this short paper, we go a bit further and we study generalized decision functions

for information tables (information systems) A = (U,A) without distinguished decision

attributes, whereby for any X,Y ⊆ A we can put:

∂X|Y (u) = {X(u′) : u′ ∈ U, Y (u′) = Y (u)} (1)

Accordingly, for any X,Y, Z ⊆ A, we can define the criterion

∂X|Y ∪Z(u) = ∂X|Y (u) ∩ ∂X|Z(u) ∀u ∈ U (2)

which means that the generalized decision model that reasons about the vectors of values

of attributes in X based on the values of attributes in Y ∪Z can be decomposed without a

loss of information (determinism) onto two simpler models based on Y and Z separately.

In particular, let us notice that the subsets X,Y, Z ⊆ A can overlap with each other.

For instance, if X ∩ Y ̸= ∅, then all vectors of values of attributes in X which belong to

∂X|Y (u) are naturally the same when projected onto X ∩ Y .

The goal of this paper is now to draw the reader’s attention to a surprising (at least for

the author) mathematical property of such understood criterion for generalized decision

function decomposition. Namely, the following is satisfied:

Proposition 1. For any A = (U,A), for any X,Y, Z ⊆ A, the following statements are
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equivalent to each other:

∂X|Y ∪Z(u) = ∂X|Y (u) ∩ ∂X|Z(u) ∀u ∈ U

∂Y |X∪Z(u) = ∂Y |X(u) ∩ ∂Y |Z(u) ∀u ∈ U

∂Z|X∪Y (u) = ∂Z|X(u) ∩ ∂Z|Y (u) ∀u ∈ U

The proof of this kind of symmetry will be shown at the conference presentation.
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Extended Abstract. Requirements against modern IT-based services increasingly

demand high reliability, integrity, and high availability of the systems. At the same time,

the ever-increasing structural and functional complexity poses complicated challenges

in diagnostics, i.e., the detection, logical, and physical localization of accidental or

intentional faults.

A significant difference between the diagnostic classical industrial systems and IT systems

originates in how faults occur and manifest as failures. In classical industrial systems, the

propagation mechanism of fault effects is relatively simple, so a single or few abstraction-

level deep system model is typically sufficient to underpin the diagnostic process. In IT

systems, however, faults occur at low levels (e.g., hidden software bugs, possible faults in

external services, or transient hardware faults).

• Their error propagation path is long due to the system’s complexity and observable

manifestation as failures occur at the end of the path in services delivered to the user

(in monitored systems, a few monitoring agents improve observability). The aspects

corrupted by the propagation of errors may change along the error propagation

path (missing data input leads to an output integrity error).

• In addition, many components’ internal structure and operation are unknown or

cannot be monitored with a realistic effort.

• Due to the high frequency of operation, non-determinism due to data dependency

of operations, etc., a significant part of faults occur as rare events. Hence, the

diagnostic problem becomes a rare event root-cause analysis task in big data streams

to be addressed at several levels of abstraction.
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• On the other hand, limiting the diagnostic resolution to the level of repair/replacement

units (FRU) is as restoring system operability takes priority over full-detail fault

isolation.

Rough Set Theory (RST) offers a mathematical paradigm for system diagnosis (SD) by

meaningful insights from complex data sets. RST operates on the principle of identifying

discernible patterns within decision tables, wherein each column corresponds to an

observed syndrome in the system, and the decision variable represents an FRU-level

fault mode. RST is a favorite candidate to manage diagnostic uncertainties from the

abovementioned factors.

Model-based RST-based granular SD aims to achieve diagnostic resolution down to the

FRU level (discernibility of FRU fault modes) to simplify fault mitigation. Applying the

RST approximation under an anticipated fault mode(s) consistent with the syndrome,

the following outcomes can be obtained: i) The boundary region is empty as only objects

related to faults are present within the positive region. The diagnosis is complete and

perfect for single or multiple (indistinguishable) faults in the set; or ii) the boundary

region is nonempty, indicating uncertainty in the fault mode to syndrome mapping, thus

necessitating a more precise evaluation after model refinement. This refinement can occur

in two ways: through value refinement (more accurate acquisition for representation

of the observations) and by introducing new attributes (state refinement). Model

refinement raises the question of data representation in the system model. RST-based

SD involves discretizing attributes [1] to work with discrete models by aggregating

continuous attributes to discrete values, while the discretization must preserve the

essential characteristics for the diagnostic process.

While phenomenological discretization (commonly used in RST) is only based on actual

observations (e.g., measuring the speed of a car), discretization for technical diagnosis

must preserve system and requirement-specific domain knowledge (e.g., overspeeding

limit). We propose using qualitative modeling, common in the engineering practice, for

discretization by distinguishing the different value domains in the system operations

and requirements (e.g., Safety Integrity Levels [2] in critical applications). Still, it can
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introduce non-determinism in the faulty case, resulting in modeling ambiguity, which

leads to diagnostic uncertainty.

RST, by its very nature, is a perfect guiding paradigm for managing diagnostic uncer-

tainty. Highlighting and measuring indiscernibility is an exact counterpart of diagnostic

uncertainty. This way, methods for reducing it in RST exactly map to model refinement-

based sequential diagnosis approaches. Moreover, the core and derived notions in RST

have a straightforward interpretation and explanation in terms of technical diagnosis,

thus making this powerful mathematical theory close to engineering thinking.

We propose using iterative RST-supported diagnostic model refinement, which assists in

determining the appropriate level of abstraction and handling modeling uncertainties

using approximations and quality metrics (e.g., accuracy). It is further supported by the

qualitative modeling perspective to aid the discretization process, enhancing diagnosis

accuracy.
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Extended Abstract. Decision bireducts provide the means for learning simple decision

models from the data; as such, they are often considered as an alternative to better

known decision reducts originating from the theory of rough sets [1]. Moreover, the

ensembles of decision bireducts turn out to be useful in many real-world application areas,

as providing easily interpretable classification models and insightful attribute rankings

[2].

Let us recall that, for a decision table A = (U,A ∪ {d}), the pair (X,B), X ⊆ U , B ⊆ A,

is called a decision bireduct, if and only if the values of attributes in B determine the

values of the decision attribute d when A is limited to X, whereby B cannot be reduced

and X cannot be extended without losing that kind of determination [3]. It is also known

that such pairs (X,B) correspond to the collections of decision rules with their left parts

based on the values of attributes in B and their supports summing up to X [1].

In [4], we studied the problem of deriving the simplest ensembles of bireducts from the

data. We considered an ensemble of m decision bireducts (X1, B1), ..., (Xm, Bm) to be

valid for A = (U,A ∪ {d}), if and only if the decision value of each object u ∈ U was

correctly recognized by decision rules corresponding to more than m/2 out of bireducts.

Then, we showed that it is NP-hard to search for such valid ensembles of decision bireducts

that minimize the cardinality of the biggest Bi out of B1, ..., Bm ⊆ A.

An analogous problem can be specified for so-called generalized decision reducts [5] –

the irreducible subsets of attributes B ⊆ A which induce the same generalized decision

functions ∂B : U → 2Vd (where Vd denotes the set of all values of decision attribute d
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which occur in A), ∂B(u) = {d(u′) : B(u′) = B(u)} (where d(·) and B(·) denote the

values and vectors of values occurring on objects in U , respectively) as the whole sets

of attributes, i.e. ∂B(u) = ∂A(u) for each u ∈ U . Herein, a generalized decision reduct

B ⊆ A can be interpreted as corresponding to a collection of non-deterministic decision

rules which – for each combination of attributes in B – point at a set of decision values

which are possible for objects for which we can observe that combination.

A generalized decision ensemble B1, ..., Bm ⊆ A can be regarded as valid, if and only if the

equality ∂B1(u) ∩ ... ∩ ∂Bm(u) = ∂A(u) holds for each u ∈ U . This kind of validity means

that although decision rules induced by combinations of values observed on particular

subsets Bi, i = 1, ...,m, can point at the decision value sets that are bigger than in the

case of ∂A (i.e. each Bi – when considered separately – may not satisfy the conditions for

being a generalized decision reduct), they become to work exactly like ∂A when combined

together (i.e. even if some ∂Bi(u) points at a possible decision value outside ∂A(u), then

the other ∂Bj (u), i ̸= j, eliminates that unwanted possibility).

In [6], we stated that – just like in the case of decision bireducts in [4] – the problem

of deriving the simplest valid generalized decision ensembles from the data is NP-hard.

Again, we used the same interpretation of simplicity, i.e., for a given ensemble of subsets

B1, ..., Bm ⊆ A, we looked at the maximum cardinality |Bi|, i = 1, ...,m, and we tried to

minimize it. However, in this short paper, we study a different version of simplicity which

refers to the overall size of decision rules induced by the generalized decision ensembles,

as well as the ensembles of decision bireducts. That size can be measured as the sum of

lengths of all decision rules that correspond to the given ensemble.

It turns out that the problems of deriving the simplest – which now means the minimum

size – generalized decision ensembles and ensembles of decision bireducts are NP-hard as

well, just like in the case of analogous problems investigated in [4,6]. The proofs of this

kind of NP-hardness will be shown at the conference presentation.
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Extended Abstract. We aim to explore two very important properties of rough-set-

inspired [1,2] approaches dealing with elimination of redundant attributes during the

feature selection processes [3]. Usually, these approaches assume that information about

decision values, as present in the original decision table, should be kept unchanged during

such elimination processes. The information about the decision attribute from a decision

system can be represented by various decision valuations [4,5], e.g., rough membership

function, generalized decision valuation etc. Such representations of decision information

are induced based on the particular clusters of objects having the same values on the

considered set of conditional attributes; these are the equivalence classes of objects, i.e.,

the so-called indiscernibility classes.

When an attribute is removed from the considered set of attributes, then some of those

classes, generated based on the whole set of attributes, are merged with each other.

Given that a decision information about a decision table A = (U,A ∪ {d}) is modeled

by a decision valuation ϕ, a subset B of attributes is said to keep the same information

about decision as the whole set A (B ⊆ A), if for each object u ∈ U in the considered

decision table, its indiscernibility class with respect to B, denoted by [u]B, induces the

same decision information ϕ([u]B) as in case of A (i.e., ϕ([u]B) = ϕ([u]A)). Following

the rough set terminology, such subsets B ⊆ A can be called ϕ-superreducts. Now while

looking for such reduced subsets of attributes there are two properties that are commonly

checked.
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The first of them states that if B is not a ϕ-superreduct, then neither of its subsets is.

This property – often called the monotonicity – is important to design efficient algorithms

for finding ϕ-superreducts in large data sets. However, one needs to remember that

not all decision valuations ϕ satisfies it. This property is equivalent to the weak union

property from the theory of semigraphoid [6]. For instance, for a decision valuation ϕ the

conditional independence statement, denoted by Iϕ(d|B|A \B), means ϕ([u]B) = ϕ([u]A)

for all u ∈ U . The weak union property imposes that Iϕ(d|X|Y ∪W ) = Iϕ(d|X ∪W |Y )

where X,Y,W ⊆ A. That is, the claim that the decision attribute d is independent of a

set of attributes Y ∪W in presence of another set of attributes X is the same as ensuring

that d remains independent of any subset of Y ∪ W when the removed attributes are

added to the set X.

The second property refers to the idea of replacing the condition (*) ∀u∈U ϕ([u]B) =

ϕ([u]A) with its alternative form (**) ∀u,u′∈U ϕ([u]A) ̸= ϕ([u′]A) ⇒ [u]B ̸= [u′]B. Such

form lets us redefine the original decision attribute d as the new one – interpreted as ϕd –

and utilize powerful Boolean-reasoning-based algorithms to search for ϕ-superreducts.

For example, if we consider the generalized decision valuation ∂ then the original decision

attribute d can be translated to a new decision attribute ∂d where ∂d([u]A) collects all

decision values incurred in the equivalence class.

However, as in case of the monotonicity, only for some of the decision valuations ϕ

criteria (*) and (**) are equivalent to each other. We refer to this kind of equivalence

as the discernibility property. In this paper, we show that for all decision valuations ϕ,

which satisfy the discernibility property, the monotonicity property is satisfied as well.

Moreover, we show that these two general properties are not equivalent to each other,

i.e., there are functions ϕ which satisfy the monotonicity property but do not satisfy the

discernibility property.
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Extended Abstract. Volumetric anomalies are one of the most important indicators

in the cybersecurity analytics [1,2]. In the practical scenario whereby the network event

logs are parsed prior to inserting them into a relational database, volumetric anomalies

usually take a form of conjunctions of attribute-value conditions over the subsets of

data columns, wherein it is expected that the volumes of events matching with those

conjunctions of conditions are much higher currently than it could be observed in the

past.

The algorithms designed to search for such volumetric anomalies face a number of inter-

esting challenges, e.g.: How to explore a “lattice” of possible conjunctions of conditions?

How to assess that the current volume is “much higher” than the volume in the past?

How to specify the current and the past time periods? In particular, there is also a

computational challenge related to calculation of those volumes against huge data sets,

especially when it comes to the historical event logs.

In this presentation, we report our experiences with real-time detection of volumetric

anomalies within the data sets of event logs of the size of tens of terabytes. For this

purpose we utilize our approximate relational database engine, which enables us to store

the original data in a compacted / compressed / summarized form, so the SQL operations

are potentially inexact but very fast [3]. In particular, it is interesting to note that the

design of this engine is based on the theory of rough sets. Moreover, it is interesting to

discuss to what extent some potential inaccuracies in the SQL query results can really

influence the process of volumentric anomaly detection.
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Extended Abstract. The main objective of the work was to solve the problem of long

last-ing computationally intensive multiscale numerical models for simulations of industrial

processes. The presentation will contain the industrial process idea and parameters,

complex fully coupled numerical model and propositions of further improvements.

1. Introduction and research methodology

In the aerospace industry, processes are defined by stringent requirements for product

quality and reliability. In the gear manufacturing process, it is important to control

the phase composition and microstructure of the surface layer. This layer is crucial

for mechanical properties such as wear resistance and fatigue strength of gear rings.

Thermochemical treatment processes, especially carburising, play a fundamental role

in manufacturing. These processes lead to an evolution of the microstructure, which

significantly affects the final properties of the material. Advances in technology, new steels

such as Pyrowear 53, and vacuum carburisation, allow gas quenching to be carried out in

a single furnace chamber immediately after the carburisation cycle. Pyrowear 53 steel was

used for the experimental part of the study for identification of model parameters. The

study used the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, which was upgraded

for the simulation of transformations in Pyrowear 53 steel. A numerical cooling model

based on Computational Fluid Dynamics (CFD) analysis was developed using Abaqus

software and fully integrated with microscale models. Improvement of computational

complexity of a fully coupled CFD model was the main objective of the work.

2. Results

The most important result for the described approach is the effect of phase transfor-

mations on the obtained temperature distributions (see Fig. 1) and final distribution of

the material properties in the product, especially stress distribution influencing cracking
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of the produced part during exploitation.

Figure 1: Temperature distribution on the surface of a gear wheel section at time
t = 360s: without consideration of phase transformations (a), with consideration of phase
transformations (b).

3. Discussion and conclusions

The critical cooling rate for core samples with nominal chemical composition was approx-

imately 3◦C/s. For cooling rates below 0.02◦C/s, a purely ferritic microstructure was

predicted. The critical cooling rate for the samples after carburising was about 0.1◦C/s.

At slow cooling, pearlite appeared in the microstructure, but martensite was observed

over the entire range of the investigated cooling rates. Multiscale simulations showed

that cooling at a gas inlet velocity of 9m/s produced a purely martensitic microstructure,

which was crucial for obtaining assumed product properties. During the presentation

of the work influence of the numerical assumptions, especially meshing procedure, on

the reliability of the final results will be discussed. One of the most important issues in

this case was meshing of the carburized layer which in comparison to the core material

is very thin and influences the computational cost the most. Application of the rough

sets for modelling of material properties, which dependently on the meshing density

can be assessed with uncertainty, can improve computational efficiency and quality of

the assessment. The possibility of rough sets application will be discussed during the

presentation. Additionally, the replacement of computationally intensive CFD model with

Finite Element Modelling (FEM) of heat transfer with convection will be also discussed.
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